Competencies and objectives

 

Course context for academic year 2024-25

La aplicación de los sistemas de automatización a procesos industriales o de servicios permite conseguir que estos se lleven a cabo eficazmente y con total autonomía, o, al menos, con alto grado de independencia del factor humano. Los equipos más usados como celebros de estos sistemas son los autómatas programables o PLCs (Programable Logic Controllers). Estos equipos interactúan con los procesos a través de sensores y accionamientos de diferentes tipos (eléctricos, neumáticos o hidráulicos). Para la conexión del PLC con los sensores y accionamientos, estos pueden disponer de diferentes tipos de modulos de entrada y salida (E/S). Además, para gobernar los accionamientos, que habitualmente trabajan a mayor potencia que el PLC, se requieren también equipos amplificadores o preaccionamientos. Hay que tener en cuenta que un PLC es un computador industrial flexible, y como tal es un sistema programable.

Actualmente la mayoría de fabricantes de PLCs cumplen en mayor o menor medida las recomendaciones del estándar IEEE 61131, que define, entre otros aspectos, varios lenguajes de programación específicos para PLCs. Para programar un PLC, además de conocer las particularidades de su funcionamiento y sus lenguajes, también hay que recurrir a ciertas estrategias de programación y diseño de las aplicaciones, para poder considerar no solo las situaciones de funcionamiento normal que se dan en las especificaciones, sino también situaciones de fallos o emergencias.

Finalmente, hay que considerar que es necesaria una interfaz entre el controlador y el operador humano, de forma que este pueda dar órdenes al sistema y monitorizarlo. Esta interfaz puede ser desde simples botones y pilotos, hasta terminales gráficos táctiles, cuyo uso se ha extendido mucho en la última década. Pero el controlador no solo se puede comunicar con un operador humano, sino con otros sistemas de su entorno, como pueden ser otros controladores, o los equipos informáticos de gestión. En este punto entran en juego los sistemas SCADA (Supervisory Control and Data Acquisition), que permiten supervisar y gestionar la cadena de producción completa de una planta con múltiples procesos, facilitando el control del consumo de recursos y de la calidad de los productos generados.

 

 

Course content (verified by ANECA in official undergraduate and Master’s degrees) for academic year 2024-25

General Competences (CG)

  • CG1 : Saber resoldre problemes d'enginyeria aplicant coneixements de matemàtiques, física, química, informàtica, disseny, sistemes mecànics, elèctrics, electrònics i automàtics, per a establir solucions viables en l'àmbit de la titulació.
  • CG4 : Conèixer les necessitats tecnològiques de la societat i la indústria i ser capaç de millorar serveis i processos de producció, aplicant tecnologia actual de robòtica, mitjançant l'elecció, adquisició i posada en marxa de sistemes robòtics en diverses aplicacions, tant industrials com de servei.
  • CG5 : Ser capaç d'obtenir i analitzar informació sobre les característiques de materials, circuits, elements de màquines, control automàtic, sensors i sistemes informàtics, amb la finalitat última d'aconseguir aplicacions robòtiques autònomes i flexibles.
  • CG6 : Concebre, calcular, dissenyar i engegar algorismes, equips o instal·lacions en l'àmbit de la robòtica, per a aplicacions industrials o de serveis, tenint en compte aspectes de qualitat, seguretat, criteris mediambientals i ús racional i eficient de recursos.

 

Specific Competences (CE)

  • CE18 : Conèixer la manera com es controlen els diversos tipus d'actuadors mitjançant amplificadors, servosistemes, vàlvules o variadors, per a saber escollir, utilitzar i programar l'element més adequat.
  • CE20 : Conèixer la manera com funcionen i es programen els controladors lògics o autòmats i saber utilitzar-los en el desenvolupament de sistemes robòtics automàtics.
  • CE5 : Interpretar el funcionament del codi font d'un programa. Definir els tipus de dades necessàries per a representar la informació. Dissenyar algorismes i codificar-los amb diferents tècniques de programació, especialment en sistemes robòtics. Verificar el correcte funcionament d'un programa.
  • CE9 : Conèixer la manera com funcionen els sistemes hidràulics i pneumàtics per a accionaments robòtics i saber aplicar-los a la resolució d'aplicacions robòtiques.

 

Transversal Competences

  • CT1 : Capacitats informàtiques i informacionals.
  • CT2 : Ser capaç de comunicar-se correctament tant de forma oral com escrita.
  • CT3 : Capacitat d'anàlisi i síntesi.
  • CT4 : Capacitat d'organització i planificació.

 

 

 

Learning outcomes (Training objectives)

No data

 

 

Specific objectives stated by the academic staff for academic year 2024-25

No data

 

 

General

Code: 33721
Lecturer responsible:
CANDELAS HERIAS, FRANCISCO ANDRES
Credits ECTS: 6,00
Theoretical credits: 1,20
Practical credits: 1,20
Distance-base hours: 3,60

Departments involved

  • Dept: PHYSICS, ENGINEERING SYSTEMS AND SIGNAL THEORY
    Area: SYSTEMS ENGINEERING AND AUTOMATICS
    Theoretical credits: 1,2
    Practical credits: 1,2
    This Dept. is responsible for the course.
    This Dept. is responsible for the final mark record.

Study programmes where this course is taught