Ir a cuerpo Ir a Estudios, Gobernanza y organización
Logo UA
Realizar búsqueda
Course description
  BASIC TOPOLOGY

Competencies and objectives

 

Course context for academic year 2018-19

El objetivo de la Topología es desarrollar herramientas matemáticas para estudiar la forma de los objetos y también para analizar las nociones de continuidad y proximidad. La Topología permite considerar la forma y la estructura de un objeto con independencia de su tamaño o de las distancias entre sus partes.

La topología es un ejemplo de teoría axiomática que se construye a partir de la definición de espacio topológico: las
definiciones van surgiendo al añadir nuevas propiedades a los espacios con los que se trabaja y los ejemplos
desempeñan un papel fundamental en la comprensión de los conceptos que se van introduciendo. Esta asignatura
debe servir al estudiante para afianzar su capacidad de abstracción.
  
Para una correcta comprensión de la misma el estudiante necesita muchas nociones de otras asignaturas del primer año: Fundamentos matemáticos, Análisis de una variable real I y Análisis de una variable real II. A su vez los contenidos de esta asignatura serán muy útiles para otras asignaturas del Grado: Análisis real de varias variables I , Curvas y superficies, Análisis real de varias variables II, Análisis de variable compleja, Topología avanzada, Teoría global de superficies y Análisis funcional.

 

 

Course content (verified by ANECA in official undergraduate and Master’s degrees)

Specific Competences (CE)

  • CE1 : Understand and use mathematical language. Acquire the capacity to enunciate propositions in different fields of Mathematics, to construct demonstrations and transmit the mathematical knowledge acquired.
  • CE10 : Communicate, both orally and in writing, mathematical knowledge, procedures, results and ideas.
  • CE3 : Assimilate the definition of a new mathematical object in terms of others already known and be able to use said object in different contexts.
  • CE4 : Know how to abstract the structural properties (of mathematical objects, of observed reality and other contexts) distinguishing them from those that are purely occasional and be able to prove them with demonstrations or refute them with counter-examples, as well as identify errors of incorrect reasoning.
  • CE6 : Solve mathematical problems using basic calculus skills and other techniques, planning their resolution according to the tools available and any time and resource restriction.

 

 

 

Learning outcomes (Training objectives)

No data

 

 

Specific objectives stated by the academic staff for academic year 2018-19

No data

 

 

General

Code: 25022
Lecturer responsible:
ALONSO GONZALEZ, CLEMENTA
Credits ECTS: 6,00
Theoretical credits: 1,32
Practical credits: 1,08
Distance-base hours: 3,60

Departments involved

  • Dept: MATHEMATICS
    Area: GEOMETRY AND TOPOLOGY
    Theoretical credits: 1,32
    Practical credits: 1,08
    This Dept. is responsible for the course.
    This Dept. is responsible for the final mark record.

Study programmes where this course is taught