Competencies and objectives

 

Course context for academic year 2022-23

La asignatura Preproceso, Recolección y Visualización de datos se enmarca dentro del contexto de la ciencia de los datos en su aspecto más práctico, como es la obtención, procesado y visualización de los datos. Se pretende que el estudiante sea capaz de manejar técnicas para la selección y extracción de datos, así como la aplicación de métodos para el pre-proceso y la integración de datos. Por último, la visualización de los datos constituye un aspecto esencial hoy día en la transmisión de la información. 

 

 

Course content (verified by ANECA in official undergraduate and Master’s degrees) for academic year 2022-23

Transversal Competences

  • CT1 : Ser capaç de liderar projectes relacionats amb la Ciència de Dades, així com dirigir equips de treball
  • CT2 : Mostrar competències informàtiques i informacionals en l'àmbit de la ciència de dades.
  • CT3 : Reunir competències en comunicació oral i escrita.

 

General Competences

  • CG1 : Aplicar els coneixements adquirits a problemes reals relacionats amb la ciència de dades.
  • CG10 : Saber utilitzar tècniques de la ciència de dades per a obtenir noves relacions i brindar informació sobre problemes d'investigació o processos organitzatius i recolzar la presa de decisions.
  • CG11 : Ser capaç d'utilitzar els principis d'enginyeria i les modernes tecnologies informàtiques per a investigar, dissenyar, implementar noves aplicacions de la ciència de dades.
  • CG12 : Ser capaç de desenvolupar experiments, processos, instruments, sistemes, infraestructures durant tot el cicle de vida de les dades.
  • CG2 : Ser capaç de desenvolupar i aprendre de forma auto-dirigida o autònoma temes relacionats amb la ciència de dades.
  • CG3 : Saber desembolicar-se en contextos multidisciplinaris i/o internacionals aportant solucions des del punt de vista de la ciència de dades.
  • CG4 : Conèixer i aplicar en cada situació les responsabilitats socials, ètiques i legals vinculades a l'aplicació dels coneixements de la ciència de dades.
  • CG6 : Ser capaç d'adaptar-se a entorns relacionats amb la ciència de dades, fomentant el treball en equip, la creativitat, la capacitat crítica i l'esperit emprenedor.
  • CG7 : Ser capaç d'adaptar-se a l'ambient canviant propi de la disciplina i de comprendre i aplicar els nous avanços técnicocientíficos relacionats amb la ciència de dades.
  • CG8 : Saber projectar, dissenyar, desenvolupar, implantar i mantenir productes, aplicacions i serveis relacionats amb la ciència de dades, tenint en compte aspectes tècnics, econòmics i d'eficiència.
  • CG9 : Saber dirigir projectes relacionats amb la ciència de dades, complint la normativa vigent i assegurant la qualitat del servei.

 

Specific Competences

  • CE11 : Dissenyar i utilitzar algorismes eficients per a accedir i analitzar grans quantitats de dades, i conèixer el maneig d'APIs per a la interconnexió de bases de dades i col·leccions de dades heterogènies.
  • CE12 : Dissenyar i utilitzar sistemes que inclouen la recopilació de dades (passiu i actiu) per a la prova d'hipòtesi i la resolució de problemes.
  • CE15 : Manejar i aplicar les eines informàtiques de càlcul numèric, optimització, simulació, visualització gràfica o unes altres per a experimentar i resoldre problemes.
  • CE6 : Determinar mètriques per a l'avaluació i validació d'anàlisi de dades.
  • CE7 : Determinar i utilitzar mètodes efectius de visualització i narració per a crear panells de control i informes d'anàlisis de dades.

 

Basic Competences

  • CB10 : Que els estudiants posseïsquen les habilitats d'aprenentatge que els permeten continuar estudiant d'una manera que haurà de ser en gran manera autodirigido o autònom.
  • CB6 : Posseir i comprendre coneixements que aporten una base o oportunitat de ser originals en el desenvolupament i/o aplicació d'idees, sovint en un context d'investigació
  • CB7 : Que els estudiants sàpien aplicar els coneixements adquirits i la seua capacitat de resolució de problemes en entorns nous o poc coneguts dins de contextos més amplis (o multidisciplinaris) relacionats amb la seua àrea d'estudi
  • CB8 : Que els estudiants siguen capaços d'integrar coneixements i enfrontar-se a la complexitat de formular judicis a partir d'una informació que, sent incompleta o limitada, incloga reflexions sobre les responsabilitats socials i ètiques vinculades a l'aplicació dels seus coneixements i judicis
  • CB9 : Que els estudiants sàpien comunicar les seues conclusions i els coneixements i raons últimes que les sustenten a públics especialitzats i no especialitzats d'una manera clara i sense ambigüitats

 

 

 

Learning outcomes (Training objectives)

No data

 

 

Specific objectives stated by the academic staff for academic year 2022-23

No data

 

 

General

Code: 43460
Lecturer responsible:
TORTOSA GRAU, LEANDRO
Credits ECTS: 6,00
Theoretical credits: 1,20
Practical credits: 1,20
Distance-base hours: 3,60

Departments involved

  • Dept: LANGUAGES AND COMPUTING SYSTEMS
    Area: LANGUAGES AND COMPUTING SYSTEMS
    Theoretical credits: 0,6
    Practical credits: 0,6
  • Dept: SCIENCE OF COMPUTING AND ARTIFICIAL INTELLIGENCE
    Area: SCIENCE OF COMPUTING AND ARTIFICIAL INTELLIGENCE
    Theoretical credits: 0,6
    Practical credits: 0,6
    This Dept. is responsible for the course.
    This Dept. is responsible for the final mark record.

Study programmes where this course is taught