Competencies and objectives

Provisional information. Pending approval by the School/Faculty Board.

 

Course context for academic year 2025-26

This course is designed to deepen students’ programming knowledge, with a focus on programming in the Python language and solving problems in the field of data science. The main elements of the language will be studied, as well as their use in efficiently and robustly handling large volumes of data. In addition to the core elements of the language, the course will also cover the main scientific computing libraries, such as NumPy, SciPy, and Pandas, as well as the data visualization library Matplotlib. By the end of the course, students should be able to effectively solve data science problems using the Python environment.

 

 

Course competencies (verified by ANECA in official undergraduate and Master’s degrees) for academic year 2025-26

Transversal Competences

  • CT1 : Ser capaz de liderar proyectos relacionados con la Ciencia de Datos, así como dirigir equipos de trabajo
  • CT2 : Mostrar competencias informáticas e informacionales en el ámbito de la ciencia de datos.
  • CT3 : Reunir competencias en comunicación oral y escrita.

 

General Competences

  • CG1 : Aplicar los conocimientos adquiridos a problemas reales relacionados con la ciencia de datos.
  • CG11 : Ser capaz de utilizar los principios de ingeniería y las modernas tecnologías informáticas para investigar, diseñar, implementar nuevas aplicaciones de la ciencia de datos.
  • CG12 : Ser capaz de desarrollar experimentos, procesos, instrumentos, sistemas, infraestructuras durante todo el ciclo de vida de los datos.
  • CG2 : Ser capaz de desarrollar y aprender de forma auto-dirigida o autónoma temas relacionados con la ciencia de datos.
  • CG3 : Saber desenvolverse en contextos multidisciplinares y/o internacionales aportando soluciones desde el punto de vista de la ciencia de datos.
  • CG4 : Conocer y aplicar en cada situación las responsabilidades sociales, éticas y legales vinculadas a la aplicación de los conocimientos de la ciencia de datos.
  • CG5 : Saber gestionar la información y los recursos disponibles relacionados con ciencia de datos.
  • CG6 : Ser capaz de adaptarse a entornos relacionados con la ciencia de datos, fomentando el trabajo en equipo, la creatividad, la capacidad crítica y el espíritu emprendedor.
  • CG7 : Ser capaz de adaptarse al ambiente cambiante propio de la disciplina y de comprender y aplicar los nuevos avances técnicocientíficos relacionados con la ciencia de datos.
  • CG8 : Saber proyectar, diseñar, desarrollar, implantar y mantener productos, aplicaciones y servicios relacionados con la ciencia de datos, teniendo en cuenta aspectos técnicos, económicos y de eficiencia.

 

Basic Competences

  • CB10 : That students possess the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous.
  • CB6 : Possess and understand knowledge that provides a basis or opportunity to be original in the development and/or application of ideas, often in a research context
  • CB7 : That students know how to apply the knowledge acquired and their ability to solve problems in new or little-known environments within broader (or multidisciplinary) contexts related to their area of ¿¿study
  • CB8 : Students are able to integrate knowledge and deal with the complexity of making judgements on the basis of incomplete or limited information, including reflections on the social and ethical responsibilities associated with information which, while incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and judgements.
  • CB9 : Students are able to communicate their conclusions and the ultimate knowledge and rationale behind them to specialist and non-specialist audiences in a clear and unambiguous way.

 

 

 

Learning outcomes (Training objectives)

No data

 

 

Specific objectives stated by the academic staff for academic year 2025-26

  • Set up the Python development environment using tools that allow for the installation of required libraries and the management of dependencies between them.
  • Identify which data structures and processing methods are most appropriate for the input data, considering the features of the Python language and the scientific libraries NumPy, SciPy and Pandas
  • Develop algorithms that efficiently consume large volumes of data obtained from various sources (local files or online), and organize and interpret them to produce datasets prepared for further processing.
  • Interpret real-world problems, analyze them, and identify the appropriate data structures and visual models to represent them.
  • Justify the decisions made during code development and explain the knowledge acquired.

 

 

General

Code: 43454
Lecturer responsible:
Araujo da Silva Costa, Angelo Gonçalo
Credits ECTS: 6,00
Theoretical credits: 1,20
Practical credits: 1,20
Distance-base hours: 3,60

Departments involved

  • Dept: SCIENCE OF COMPUTING AND ARTIFICIAL INTELLIGENCE
    Area: CIENCIA DE LA COMPUTACIO, INTEL·LIGENCIA ARTIFICIA
    Theoretical credits: 1,2
    Practical credits: 1,2
    This Dept. is responsible for the course.
    This Dept. is responsible for the final mark record.

Study programmes where this course is taught