DEGREE IN ROBOTIC ENGINEERING (2024-25)

Código:
 C211

Créditos:
 240
 
Fecha de aprobación:
 23/01/2016

Título:
 Undergraduate 3-5 years (ECTS)
 
Precio:
 17,34
 1st-registration credits
 

RAMA

Engineering and Architecture

PLAN

DEGREE IN ROBOTIC ENGINEERING

TIPO DE ENSEÑANZA

Face-to-face

CENTROS DONDE SE IMPARTE

ESCUELA POLITECNICA SUPERIOR

ESTUDIO IMPARTIDO CONJUNTAMENTE CON

Solo se imparte en esta universidad

FECHAS DE EXAMEN

Acceda al listado de fechas de examen para esta titulación.

 

PLAN DE ESTUDIOS OFERTADO EN EL CURSO 2024-25

 

Leyenda: No ofertadaSin docencia
FIRST YEAR
SECOND YEAR
12 créditos
 
Curso
Título
Créditos
Subject
48 créditos
 
 
THIRD YEAR
60 créditos
 
Curso
Título
Créditos
Subject
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
3
COMPULSORY
6
 
 
 
FOURTH YEAR
42 créditos
 
Curso
Título
Créditos
Subject
4
COMPULSORY
6
 
4
COMPULSORY
6
 
4
COMPULSORY
6
 
4
COMPULSORY
6
 
4
COMPULSORY
6
 
4
COMPULSORY
6
 
4
COMPULSORY
6
 
 
6 créditos
 
Curso
Título
Créditos
Subject
12 créditos
 
Curso
Título
Créditos
Subject
4
END OF DEGREE WORK
12
 
 
 
 
 
Superado este bloque se obtiene
DEGREE IN ROBOTIC ENGINEERING

 
 

COMPETENCIAS


General Competences (CG)

  • CG1:Saber resolver problemas de ingeniería aplicando conocimientos de matemáticas, física, química, informática, diseño, sistemas mecánicos, eléctricos, electrónicos y automáticos para establecer soluciones viables en el ámbito de la titulación.
  • CG2:Capacidad de utilizar herramientas informáticas para el modelado, la simulación y el diseño de aplicaciones de ingeniería.
  • CG3:Poseer y comprender los conocimientos que posibilitan ser original en el desarrollo o aplicación de ideas para resolver problemas de ingeniería novedosos o multidisciplinares, después de analizar y entender las especificaciones planteadas.
  • CG4:Saber las necesidades tecnológicas de la sociedad y la industria, y ser capaz de mejorar servicios y procesos de producción aplicando tecnología actual de robótica, mediante la elección, adquisición y puesta en marcha de sistemas robóticos en diferentes aplicaciones, tanto industriales como de servicios.
  • CG5:Ser capaz de obtener y analizar información sobre las características de materiales, circuitos, elementos de máquinas, control automático, sensores y sistemas informáticos, con el fin último de lograr aplicaciones robóticas autónomas y flexibles.
  • CG6:Concebir, calcular, diseñar y poner en marcha algoritmos, equipos o instalaciones en el ámbito de la robótica, para aplicaciones industriales o de servicios, teniendo en cuenta aspectos de calidad, seguridad, criterios medioambientales, uso racional y eficiente de recursos.
  • CG7:Saber aplicar nuevas tecnologías de robótica a los distintos sectores empresariales especialmente los industriales y de servicios para la mejora de su competitividad.
  • CG8:Ser capaz de integrar en la sociedad robots aplicando criterios éticos adecuados cuando sean necesarios y saber transmitir los beneficios que la robótica puede aportar, sin ignorar los riesgos de una incorrecta aplicación.

Specific Competences (CE)

  • CE1:Desarrollar la capacidad del alumno para aplicar, tanto desde un punto de vista analítico como numérico, los conocimientos sobre: Álgebra Lineal, Cálculo Diferencial e Integral, Ecuaciones Diferenciales y en Derivadas Parciales así como Variable Compleja, a diferentes problemas matemáticos que se planteen en sistemas robóticos.
  • CE2:Entender y saber aplicar en problemas de ingeniería los fundamentos físicos en los que se basa la ingeniería de la robótica: estática, cinemática, dinámica, mecánica, termodinámica, electromagnetismo y circuitos eléctricos.
  • CE3:Conocer los principales aspectos de la estructura y propiedades químicas y funcionales de los materiales con el objetivo de ser capaz de determinar aquellos más adecuados para una aplicación en robótica.
  • CE4:Conocer y evaluar la estructura y componentes básicos de los computadores. Conocer, saber utilizar e integrar los sistemas operativos y sistemas empotrados, así como sus características de multitarea o comunicación entre aplicaciones.
  • CE5:Interpretar el funcionamiento del código fuente de un programa. Definir los tipos de datos necesarios para la representación de la información. Diseñar algoritmos y codificarlos con distintas técnicas de programación, especialmente en sistemas robóticos. Verificar el correcto funcionamiento de un programa.
  • CE6:Tener capacidad de visión espacial y conocimiento de las técnicas de representación gráfica, que permitan el diseño y la interpretación de planos de sistemas mecánicos y de circuitos eléctricos y electrónicos. Conocer y saber utilizar programas informáticos de diseño y visualización de esquemas de circuitos, estructuras y mecanismos.
  • CE7:Conocer la evolución histórica de los robots, clasificación, tipos, estructura y morfología de los robots. Identificar y conocer la funcionalidad de los componentes de un robot.
  • CE8:Entender los principios de estructuras, máquinas, mecanismos, articulaciones y sistemas de transmisión de movimiento, y saber aplicarlos en la ingeniería de sistemas robóticos.
  • CE9:Conocer cómo funcionan los sistemas hidráulicos y neumáticos para accionamientos robóticos, y saber aplicar estos en la resolución de aplicaciones de robótica.
  • CE10:Tener conocimientos de los aspectos fundamentales de ciencia y tecnología de materiales más adecuados para la construcción de robots de diferentes tipos. Conocer las aleaciones metálicas, materiales no metálicos, nuevas tendencias y sus estructuras y morfologías.
  • CE11:Saber aplicar los principios de resistencia de materiales y comportamiento elástico (deformación, tracción, flexión, uniones) y ser capaz de determinar los más adecuados por su resistencia y durabilidad para su aplicación en robótica.
  • CE12:Conocer los principios de teoría de circuitos y los fundamentos de electrotecnia y electrónica (analógica, digital y de potencia), y ser capaz de analizar circuitos existentes, o diseñar otros nuevos, para sistemas robóticos u otros sistemas auxiliares.
  • CE13:Conocer y entender el funcionamiento de las máquinas eléctricas, especialmente motores de CA y CC, y saber aplicarlos en el análisis y diseño de actuadores en sistemas robóticos.
  • CE14:Conocer las herramientas matemáticas y aplicaciones informáticas más adecuadas para el modelado y análisis de sistemas lineales y no lineales, y ser capaz de analizar su comportamiento dinámico.
  • CE15:Ser capaz de modelar y simular aspectos de cinemática, dinámica, estructuras y mecanismos para poder diseñar y analizar sistemas robóticos.
  • CE16:Tener capacidad para abordar problemas de cinemática y dinámica asociados al diseño, construcción y análisis de robots. Saber utilizar y diseñar algoritmos para generar las trayectorias de movimiento, con suficiente precisión, para posicionar adecuadamente diferentes tipos de robots.
  • CE17:Conocer diferentes clases de dispositivos sensores usados para capturar información del propio robot y de su entorno, así como sus principios de funcionamiento. Saber aplicar los métodos y técnicas para medir, procesar, fusionar y representar la información captada.
  • CE18:Conocer cómo se controlan los diferentes tipos de actuadores mediante amplificadores, servos, válvulas, o variadores, para saber escoger, utilizar y programar el elemento más adecuado.
  • CE19:Analizar y entender la configuración de un sistema de control automático para proceder a su modificación o actualización mediante las técnicas que permitan diseñar, configurar y ajustar controladores.
  • CE20:Conocer cómo funcionan y se programan los controladores lógicos o autómatas, y saber utilizarlos en el desarrollo de sistemas robóticos automáticos.
  • CE21:Conocer cuáles son las fuentes de energía más adecuadas para robots fijos o autónomos. Entender el funcionamiento y las características de diferentes fuentes de energía autónomas, como baterías, pilas de combustible o células solares, y tener la capacidad de seleccionar la adecuada para cada aplicación de robótica autónoma.
  • CE22:Ser capaz de aplicar las técnicas de control cinemático y dinámico, planificación y programación de robots, y otros sistemas de automatización asociados, en distintas situaciones.
  • CE23:Saber seleccionar un robot para su implantación en una aplicación teniendo en consideración las especificaciones y los estándares existentes.
  • CE24:Estar al corriente de las nuevas tendencias en sistemas robóticos, especialmente en robots industriales, humanoides, bio-inspirados, nano y microrobótica, robótica social, telerobótica, robots asistenciales y saber los campos de aplicación en los que son eficaces.
  • CE25:Conocer y utilizar las medidas de seguridad para entornos robóticos industriales o de servicios en los que intervienen las personas, teniendo en cuenta los estándares técnicos correspondientes en este aspecto y las consideraciones éticas cuando sean pertinentes.
  • CE26:Conocer los distintos medios de locomoción aplicables a la robótica, sus particularidades dinámicas y campos de aplicación más adecuados (ruedas, orugas, patas, aéreos y otros).
  • CE27:Conocer las técnicas de inteligencia artificial utilizadas en robótica industrial y de servicios, saber cómo utilizarlas en aplicaciones robóticas fijas y móviles.
  • CE28:Ser capaz de aplicar métodos de reconocimiento de patrones y de aprendizaje computacional en el análisis de datos sensoriales y para la toma de decisiones en sistemas robóticos.
  • CE29:Ser capaz de aplicar técnicas para la interacción entre sistemas robóticos y personas. Conocer los sistemas cognitivos y de aprendizaje que se pueden aplicar a la robótica.
  • CE30:Saber cómo aplicar los principios de arquitecturas de red, protocolos y tecnologías de redes actuales para comunicar los elementos de un sistema robótico entre sí y con otros equipos informáticos. Conocer las características y estándares de comunicaciones para ámbito industrial, y saber escoger los adecuados para aplicaciones de robótica en entornos de trabajo especiales.
  • CE31:Conocer y entender las técnicas para detección, reconocimiento o seguimiento de elementos dentro del entorno de un robot, y saber utilizar o desarrollar algoritmos para poner en marcha esas técnicas.
  • CE32:Saber cómo funcionan distintos tipos de sistemas de navegación, localización y mapas, para sistemas robóticos, y los ámbitos de aplicación en donde puede usarse (interiores, aéreo, terrestre, marino...).
  • CE33:Ser capaz de establecer sistemas robóticos cooperativos y multirobot aplicando las técnicas adecuadas.
  • CE34:Tener capacidad para diseñar y proyectar sistemas robóticos y su implantación industrial y en el ámbito de los servicios.
  • CE35:Conocer, entender y saber aplicar metodologías de análisis y validación de oportunidades de negocio en el ámbito de la robótica.

Transversal Competences

  • CT1:Capacidades informáticas e informacionales.
  • CT2:Ser capaz de comunicarse correctamente tanto de forma oral como escrita.
  • CT3:Capacidad de análisis y síntesis.
  • CT4:Capacidad de organización y planificación.

Competences of the Final Degree Project

  • TFG:Ejercicio original a realizar individualmente y presentar y defender ante un tribunal universitario, consistente en un proyecto en el ámbito de la Ingeniería Robótica de naturaleza profesional en el que se sinteticen e integren las competencias adquiridas en las enseñanzas.
 
 

LANGUAGE REQUIREMENT (IN A FOREIGN LANGUAGE)

Students who study an undergraduate degree at the University of Alicante must confirm a minimum level of B1 in a foreign language (a B2 is recommended) in order to obtain the diploma.  

The required language level is in accordance with the Common European Framework of Reference for Languages. 

The language accreditation requirement can be obtained previously or at any time during university studies. However, the language requirement will be necessary in order to be able to assess the final year project.

The different forms of obtaining such language requirement can be consulted in the additional information in this section.  

+info

LANGUAGE TEACHING COMPETENCE CERTIFICATE

Students who want to have a career in non-university teaching when they finish their studies are recommended to obtain the teaching competence certificate (Valencian and/or foreign languages).

This certificate can be obtained by taking specific itineraries in your university studies or by taking the UA teaching competence course in Valencian, German, French and English.

+info

FINAL YEAR PROJECT (TFG)

All the official undergraduate degrees must be completed by preparing and defending a final year project, which must be done in the final phase of the studies and be aimed at the assessment of competences associated to the degree.

The final year project must be an original, independent and personal work. The elaboration of it may by individual or coordinated. Each student will prepare this project under the supervision of a tutor, allowing students to show the received training content in an integrated many, as well as the acquired competences associated to the undergraduate degree.

In order to register in the final year project, students must comply with the requirements established in the “Regulations for continuation studies for students registered in undergraduate degrees at the University of Alicante”. Among the requirements established to be able to register in the final year project, a minimum of 168 credits must be passed in undergraduate degrees with a total of 240 credits, and a minimum of 228 credits in undergraduate degrees with a total of 300 credits or more.

In order for the final year project to be assessed, a B1 level of a foreign language (B2 is recommended) must be confirmed.

+info

 
 
 
 

DEGREE IN ROBOTIC ENGINEERING. SYLLABUS SUMMARY

ingenieria robotica

 
 

Internal Quality Assurance System (SGIC) of the Title

Follow-up of the Title