Plan de estudios

Universidad de Alicante. Página principal
Plan de estudios: UNIVERSITY MASTER'S DEGREE IN MATERIALS, WATER AND SOIL ENGINEERING
Saltar idiomas
Español | Valencià | English
Saltar iconos
Saltar cabecera
Universidad de Alicante. Página principal
Ficha del estudio

UNIVERSITY MASTER'S DEGREE IN MATERIALS, WATER AND SOIL ENGINEERING

Code:
 D026

Credits:
 60
 
Publication date:
 20/06/2011

Title:
 Master (ECTS)
 
Fee:
 46,20
 1st registration credits
 

FIELD OF STUDY

Engineering and Architecture

SYLLABUS

UNIVERSITY MASTER'S DEGREE IN MATERIALS, WATER AND SOIL ENGINEERING

TYPE OF EDUCATION

Face-to-face

LANGUAGE / S THAT IS OFFERED

Spanish

CENTRES WHERE IT IS TAUGHT

University Polytechnic

PROGRAMME JOINTLY SHARED WITH

Only taught at this university

EXAMINATION DATES

Enter the list of examination dates for this graduate programme.

SYLLABUS OFFERED

 

Legend: Not offeredNo teaching
SOLE
33 credits
 
21 credits
 
6 credits
 
Year
Title
Credits
Subject
1
END OF MASTER WORK
6
 
 
 
Once this block is approved, you get
MASTER'S DEGREE IN MATERIALS, WATER AND SOIL ENGINEERING

OBJECTIVES

 

The objective of this Master’s Degree course is to train professionals and academics in the fields of construction and soil engineering, with the aim of meeting the growing demand for experts which has arisen as a result both of an increase in the construction of infrastructures and of the interest shown in environmentally aware management of hydraulic resources in terms of soil and structures.  The course offers a wide range of options in the fields of Materials and Soil Engineering, and represents a cross-disciplinary training which integrates Hydraulics as a dynamic agent affecting the materials involved in engineering and the natural processes which influence structures and the soil on which they are built.
The Master’s course consists of practical and specialised courses which also address the specific needs of the various branches of Materials Engineering (“Special Concretes” and “Durability of Concrete Structures”, among others), of Soil Engineering (“Rock Mechanics” and “Foundation Pathologies”, among others) and Hydraulic Engineering (“Hydraulic Structures”).
It also includes subjects which serve as a point of connection between Hydraulic and Soil Engineering, through the flow of dense fluids (“Advanced River Engineering”), and between these and Materials Engineering, through an examination of coastal dynamics, how the coast is affected and the tools available and necessary for its protection (“Innovation in Maritime and Coastal Works”).  These subjects have been designed in order to provide the experience and basic tools necessary for undertaking research.
In addition to providing a training in theoretical research and practice specific to different fields of application, the individual subjects offered within the subject areas provide a training which covers generic, cross-disciplinary needs, focusing on topics common to the different branches of Engineering such as the use of cartographic tools for land management (“Introduction to GIS”) or numerical methods (“Finite Elements Method as an Approach Applied to Engineering Problems”, “Numerical Methods and Symbol Manipulators Applied to Engineering Problems”, “Statistical Methods Applied to Engineering”).  A series of courses has thus been established enabling students to choose their area of study, and which contributes to a specialised, cross-disciplinary and multi-disciplinary training.
The principle objective of the programme is to train specialised professionals and researchers in the application of methodologies and techniques for detection , diagnosis, analysis and representation, decision-making, assessment and the preparation of studies and projects  in sustainable engineering in relation to the natural environment and the natural processes that occur therein.
Complementary to the students’ curriculum, the Master’s Degree course offers a number of activities aimed at providing students with multidisciplinary opportunities and experiences, similar to those offered on the Master’s courses in “Soil and Seismic Engineering” (Polytechnic University of Catalonia) or “Architecture, Structures and Technology” (Polytechnic of Milan), among other national and international benchmark centres.
Besides attaining abilities, skills and knowledge in areas of engineering pertaining to the interaction of construction materials with soil and water (which is of great importance when undertaking research in related areas in order to obtain a doctorate), students will also acquire the professional skills described by national and  international networks and organisations, enabling a deeper understanding of civil engineering.  

Having successfully completed their Master’s Degree, students will have attained a sufficient  scientific, technical and methodological level to undertake design, planning, management, maintenance, conservation and exploitation, and will be able to apply their technical capacity to R&D&i  projects or to advanced technical professional practice.
The fundamental objective of this Master’s Degree course is to offer students an advanced, multidisciplinary training aimed at professional research, which will equip them to successfully enter the following rapidly developing fields of engineering: 
Research in Hydraulic Engineering.
Research in Materials Engineering.
Research in Soil Engineering.
Research in Hydraulic Engineering (projects, construction and maintenance of hydraulic structures, management, planning and exploitation of hydraulic infrastructures, planning hydraulic resources, town planning based on sustainable development).
Research in Materials Engineering (standards, bases and mechanisms of corrosion, new construction materials and their applications, materials testing, environmental sustainability criteria, techniques for characterising, modelling, reporting and diagnosing structural damage, durability of materials).
Research in Soil Engineering (observation and diagnosis of foundation and wall pathologies, writing reports, constructive solutions, improvement techniques. calculating slope and hillside stability, instrumentation systems, numerical models, testing techniques, geographic information systems, database design).
Application of the appropriate research methodologies to the above lines of research.
For each area of research, a more detailed explanation is given below of these objectives as they relate to students’ training:

  •  To possess current knowledge of each subject area:

or Research problems which have been resolved, together with the techniques used,
or Research problems which remain unresolved,

 or Currently open areas of research.

  •  To study techniques which improve on the presently existing possibilities.
  •  To explain the importance of working in these subject areas.
  •  Demands arising from the scientific community.
  •  Demands arising from business and society.
  •  Implementation of one of these techniques in the laboratory,
  •  Proposal for a new solution to one of the presently unresolved research problems.

 

COMPETENCES


General Competences (CG)

  • CG1:Adquirir una comprensión del método científico, a través de la realización de las prácticas experimentales de laboratorio siguiendo de forma explícita las diversas etapas: observación, análisis y toma de datos, evaluación, comparación de resultados y conclusiones.
  • CG2:Ser capaz de estudiar, comprender y criticar objetivamente bases de datos y publicaciones científico-técnicas.
  • CG3:Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio profesional e investigador.
  • CG4:Comprensión de los múltiples condicionamientos de carácter técnico, legal y de la propiedad que se plantean en los diferentes campos de la ingeniería, y capacidad para establecer diferentes alternativas válidas, elegir la óptima y plasmarla adecuadamente, previendo los problemas, y empleando los métodos y tecnologías más adecuadas, con la finalidad de conseguir la mayor eficacia y favorecer el progreso y un desarrollo de la sociedad sostenible y respetuoso con el medio ambiente.
  • CG5:Capacitación científico-técnica y metodológica para el reciclaje continuo de conocimientos y el ejercicio de las funciones profesionales de asesoría, análisis, diseño, cálculo, proyecto, planificación, dirección, gestión, construcción, mantenimiento, conservación y explotación en los campos de la ingeniería civil.
  • CG6:Conocimiento de la historia de la ingeniería civil y capacitación para analizar y valorar las obras públicas en particular y de la construcción en general.
  • CG7:Conocimiento para aplicar las capacidades técnicas y gestoras en actividades de I+D+i dentro del ámbito de la ingeniería civil.
  • CG8:Capacidad para la realización de estudios de planificación territorial y de los aspectos medioambientales.
  • CG9:Capacidad para planificar, diseñar y gestionar infraestructuras, así como su mantenimiento, conservación y explotación.
  • CG10:Capacidad de realización de estudios, planes de ordenación territorial y urbanismo y proyectos de urbanización.
  • CG12:Conocimientos adecuados de los aspectos científicos y tecnológicos de métodos matemáticos, analíticos y numéricos de la ingeniería.
  • CG13:Capacidad para abordar y resolver problemas matemáticos avanzados de ingeniería, desde el planteamiento del problema hasta el desarrollo de la formulación y su implementación en un programa de ordenador.

Specific Competences:

    Basics of Physics and Mathematics applied to Engineering

    • C1.1:Aplicar y distinguir las características principales de los movimientos oscilatorios y ondulatorios a sistemas reales.
    • C1.2:Interpretar y aplicar los fenómenos de interferencia, difracción y polarización de ondas para la caracterización de materiales.
    • C1.3:Conocer y determinar los elementos de la estadística descriptiva.
    • C1.4:Calcular los estadísticos analizados con el uso del ordenador.
    • C1.5:Conocer las distribuciones de probabilidad y usarlas en el estudio de casos prácticos.
    • C1.6:Realizar análisis de la varianza: ANOVA.
    • C1.7:Calcular ajustes por rectas de regresión con la utilización del ordenador.
    • C1.19:Conocer el comportamiento dinámico de sistemas estructurales y las técnicas numéricas y/o experimentales para su determinación.
    • C1.20:Conocer las bases matemáticas habitualmente utilizadas para la simulación de sismos.
    • C1.21:Conocer las normativas sísmicas actuales.
    • C1.22:Plantear criterios de diseño sismorresistente de una forma racionalizada.
    • C1.23:Interpretar y aplicar los fenómenos de interferencia, difracción y polarización de ondas para la caracterización de materiales.
    • C1.24:Adquirir estrategias para la resolución de problemas de las construcciones civiles ante las vibraciones transmitidas vía terreno.
    • C1.25:Analizar la propagación de los fenómenos sísmicos en función de las características mecánicas del terreno.

    Hydraulic Engineering

    • C2.1:Capacidad para proyectar, dimensionar, construir y mantener estructuras hidráulicas.
    • C2.2:Capacidad de planificación, gestión y explotación de infraestructuras relacionadas con la ingeniería hidráulica.

    Materials Engineering

    • C3.1:Conocer los materiales conglomerantes usados en ingeniería.
    • C3.2:Conocer los procesos de deterioro del hormigón.
    • C3.3:Conocer y comprender los fundamentos y mecanismos de los procesos de corrosión metálica en las condiciones ambientales propias de los edificios e infraestructuras.
    • C3.4:Conocer la resistencia a la corrosión de los materiales metálicos más importantes, en las condiciones de exposición propias de los edificios e infraestructuras.
    • C3.5:Conocer algunas recomendaciones en cuanto al proyecto y ejecución de las construcciones para evitar o minimizar la corrosión metálica.
    • C3.6:Conocer y comprender los sistemas más importantes de protección contra la corrosión metálica.
    • C3.7:Conocer y comprender los procedimientos más importantes de evaluación del daño por corrosión metálica en las estructuras.
    • C3.8:Conocimiento de nuevos materiales de construcción.
    • C3.9:Conocimiento de aplicaciones de nuevos materiales de construcción.
    • C3.10:Diseño de materiales de construcción.
    • C3.11:Capacidad para la elaboración de materiales de construcción.
    • C3.12:Capacidad para el ensayo de materiales de construcción.
    • C3.13:Conocimiento de criterios de sostenibilidad medioambiental.
    • C3.17:Comprender los mecanismos de corrosión preferentes en los aceros embebidos en hormigón ante el ataque de agresivos.
    • C3.20:Conocer la influencia del ambiente sobre la durabilidad del hormigón.
    • C3.25:Conocimiento de nuevos materiales reforzados con fibras.
    • C3.31:Conocer los criterios de durabilidad que van unidos las estructuras de hormigón.
    • C3.32:Conocimiento de los parámetros que determinan la porosidad y la fisuración, determinantes en la durabilidad del hormigón.
    • C3.34:Conocer y comprender los principales mecanismos de transporte de sustancias agresivas a través del hormigón.

    Soil Engineering

    • C4.12:Capacidad para la determinación de las propiedades físicas químicas y geomecánicas de las rocas.
    • C4.13:Capacidad para la determinación de las propiedades geomecánicas de las discontinuidades.
    • C4.14:Capacidad para la determinación de las propiedades geomecánicas de los macizos rocosos.
    • C4.15:Capacidad para aplicar las técnicas de ensayos de las rocas y de los macizos rocosos.
    • C4.16:Capacidad para la modelización numérica de elementos construidos en macizos rocosos.
    • C4.17:Capacidad para el diseño de obras de ingeniería construidas en macizos rocosos.
    • C4.18:Conocimientos sobre los Sistemas de Información Geográfica.
    • C4.19:Capacidad para realizar modelos lógicos y conceptuales sobre la realidad del territorio.
    • C4.20:Capacidad para diseñar bases de datos gráficas y alfanuméricas a partir de modelos sobre el territorio.
    • C4.21:Capacidad para gestionar y analizar bases de datos.

Basic Competences and Competences included under the Spanish Qualifications Framework for Higher Education (MECES)

  • CB6:Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
  • CB7:Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB8:Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB9:Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB10:Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

 

MASTER’S DEGREE: CREDITS AND SUBJECTS

 

 

Subject type

Credits

 Compulsory (OB)

33

 Optional (OP)

21

 Master’s Final Project (OB)

  6

TOTAL CREDITS

60

 

DISTRIBUTION OF SUBJECTS BY YEAR/SEMESTER

 

FIRST SEMESTER 30 ECTS

SECOND SEMESTER 30 ECTS

 

SUBJECT

TYPE

ECTS

SUBJECT

TYPE

ECTS

 

THE BASICS OF PHYSICS AND MATHEMATICS APPLIED TO ENGINEERING

 

STATISTICAL METHODS APPLIED TO ENGINEERING 

OB

3

NUMERICAL METHODS AND SYMBOL MANIPULATORS APPLIED TO ENGINEERING PROBLEMS

OP

3

 

FINITE ELEMENTS METHOD AS AN APPROACH APPLIED TO ENGINEERING PROBLEMS

OP

3

 

THE BASIC PHYSICS OF VIBRATIONS AND WAVE PHENOMENA

OB

3

 

NUMERICAL METHODS AND SYMBOL MANIPULATORS APPLIED TO ENGINEERING PROBLEMS

OP

3

 

DYNAMIC ANALYSIS OF STRUCTURES APPLIED TO ANTI-SEISMIC CONSTRUCTIONS

OB

3

NON-INVASIVE ANALYSIS TECHNIQUES APPLIED TO CIVIL ENGINEERING

OP

3

 

BASIC ASPECTS OF FINITE ELEMENT MODELLING

OP

3

 

HYDRAULIC ENGINEERING

 

HYDRAULIC STRUCTURES

OB

3

ADVANCED RIVER ENGINEERING

OP

3

 

INNOVATION IN MARITIME AND COASTAL STRUCTURES

OP

3

 

MATERIALS ENGINEERING

 

SCIENCE AND TECHNOLOGY OF INORGANIC CONGLOMERATES AND PHYSICAL-CHEMICAL PROCESSES OF DETERIORATION IN CONCRETE

OB

3

PHYSICAL AND MECHANICAL CHARACTERISATION OF CONCRETES CONTAINING RECYCLED AGGREGATES

OP

3

 

SUPPLEMENTARY CEMENTING MATERIALS AND SUSTAINABILITY IN CIVIL ENGINEERING

OB

3

METHODOLOGY OF PREVENTION AND DETECTION OF DAMAGE IN CIVIL WORKS STRUCTURES AND CONSTRUCTIONS

OP

3

 

EXPERIMENTAL PROCEDURES FOR CORROSION STUDIES

OP

3

 

DURABILITY OF CONCRETE STRUCTURES

OB

3

MULITFUNCTIONAL CONDUCTIVE CONCRETE

OP

3

 

METALLIC CORROSION IN CONSTRUCTION

OB

3

MICROSTRUCTURAL CHARACTERISATION TECHNIQUES IN CONSTRUCTION MATERIALS

OP

3

 

SPECIAL CONCRETES

OB

3

DESIGN OF STRUCTURES USING COMPOSITE MATERIALS

OP

3

 

SOIL ENGINEERING

 

INTRODUCTION TO GIS

OB

3

ROCK MECHANICS

OB

3

 

SLOPE AND HILLSIDE STABILITY

OP

3

 

FOUNDATION PATHOLOGIES

OP

3

 

MASTER’S FINAL PROJECT

OB

6

 

               

 

 

GENERAL COURSE PROGRAMME

 

The course programme consists of four subject areas containing the 11 compulsory subjects and 14 optional subjects offered.  Subjects have been grouped according to subject matter, providing coherent training related to the current areas of research offered in the doctorate programmes of those departments involved in the teaching of this course.

 

A brief description is given below of the subject areas:

1. Basics of physics and mathematics applied to Engineering (FFMAI)

2. Hydraulic Engineering (IA)

3. Materials Engineering (IM)

4. Soil Engineering (IT)

 

1.- The basics of physics and mathematics applied to Engineering (FFMAI): The aim of this subject is to extend and update knowledge in basic physics and mathematics, and in scientific  research, thus enabling students to develop their ability to rigorously apply such knowledge to their own research .

 

2.- Hydraulic Engineering (IA): The aim of this subject is to offer students specific knowledge relevant to design, projects and studies related to the rehabilitation of hydraulic works, the mangement of hydraulic resources, the study of floods and the application of mathematical models for use in advanced river engineering.

 3.- Materials Engineering (IM): This subject includes the study of the basic concepts of special concretes, including their characterisation, production and technology.  In addition, the durability of concrete constructions  will be studied in-depth, examining the science and technology of conglomerates, metal corrosion and the methodology of prevention and detection of damage.  Likewise, students will study techniques for the microstructural characterisation of materials.

 

4.- Soil Engineering (IT): This subject addresses the concepts of rock mechanics and modelling using numerical methods.  In addition, advanced concepts in the study of slope and hillside stabilty are examined, together with foundation pathology.  Lastly, students are provided with an introduction to geographical information systems and their applications in land management.

 

 

ENTRY REQUIREMENTS

 

According to the Regulations of the University of Alicante, the following requirements must be complied to have access to official taught Master’s degrees:

  1. To be in possession of a SPANISH OFFICIAL GRADUATE DEGREE CERTIFICATE or other issued by an institution of higher education  within the EHEA (European Higher Education) that enables the holder to have access  to Master’s degrees in the issuing .
  2. To be in possession of an officially approved  FOREIGN HIGHER EDUCATION DEGREE CERTIFICATE that had been recognised as equal to the degree that allows access to the requested studies.
  3. To be in possession of a UNIVERSITY DEGREE CERTIFICATE obtained in a University or Higher Education Institution of COUNTRIES OUTSIDE THE EHEA, without the prior approval of their studies. In this case, the following should be considered:
  • Non- recognised degree certificates shall require a technical report showing an equivalence statement issued by the University of Alicante (ContinUA – Continuing Education Centre), for which the corresponding fee should be paid.
  • Access through this way does under no circumstances imply prior official approval of the holder’s degree certificate, nor its recognition for purposes other than studying a master's degree.

 

ADMISSION AND ASSESSMENT CRITERIA

 

1.    Admission Profile

For admission to the University Master’s Degree course in Materials, Hydraulic and Soil Engineering at the University of Alicante, applicants should hold one of the following:

  1. An officially recognised Spanish Degree in Civil Engineering, Construction Engineering or a qualification as Architect, Industrial Engineer or related field.
  2. A 5-year Degree in Road, Canal and Port Engineering, Chemistry, Physics, Geological Engineering, Architecture, Industrial Engineering or related fields, obtained according to course programmes in existence prior to the enactment of RD 1393/2007.
  3. A 3-year Degree in Public Works, Architectural Technology, Industry or Mining, or related fields, obtained according to course programmes in existence prior to the enactment of RD 1393/2007, having successfully completed a number of credits equivalent to at least 180 ECTS credits.
  4. An official university qualification issued by a higher education institution forming part of the European Space for Higher Education, officially equivalent to the qualifications indicated in points 1 and 2 above, and which qualifies the holder for admittance onto a Master’s Degree course in the issuing country.
  5. A non-homologated qualification from abroad, accrediting a level of training equivalent to the corresponding official Spanish university qualifications indicated in points 1 and 2 above, and which qualifies the holder for admittance to a Master’s Degree course in the issuing country.

 

2.     Assessment criteria

The selection criteria employed by the Master’s Academic Committee are:

a) A  three, four or five year Degree in  Road, Canal and Port Engineering, Chemical Engineering, Physics, Geology, Architecture, Industrial Engineering , Public Works, Mining, or qualifications in related disciplines which are eligible for conversion to 240 European credits.

b) Level of achievement reflected in the academic record.

c) Grades obtained in subjects related to the Master’s Degree.

The Master’s Academic Committee will specify the selection criteria for adjudicating admissions to the Master’s Degree.  These criteria will be published on the Master’s official web page during the pre-enrolment period.  Where admission is denied, the Master’s Academic Committee will provide the applicant with a written explanation of their decision.

 

PRE-ENROLMENT AND ENROLMENT

 

PRE-ENROLMENT +info

Students who intend to study for an officially recognised Master’s Degree at the UA should complete pre-enrolment in accordance with the guidelines and deadlines specified annually.

 

ENROLMENT +info

Following publication of the final list of those admitted to the course, an email containing a user password will be sent to successful applicants, enabling them to enrol via the Campus Virtual in accordance with the guidelines and deadlines specified annually.

In the registration process, the documents issued abroad must be official, duly notorised and translated. Further information:


NUMBER OF PLACES

 

COURSE NUMBER OF PLACES
2012-13 40
2013-14 40
2014-15 40
2015-16 40
2016-17 40

 

Focus

 

Professional.

 

Degree course specialisation profile

 

The main objective of the Master’s Degree is to enable students to acquire the professional skills necessary for the teaching profession, in line with the commonly accepted criteria and in compliance with current legislation.

Within the framework of the design of this Master’s degree, it was considered that initial training should provide future teachers with the theoretical knowledge, practical skills, attitudes, interaction with colleagues  and teaching practice necessary to provide the basis for further professional development.  Indeed, life-long professional development is greatly influenced by the initial training received.

In this respect, the course programme is primarily aimed at producing teaching professionals, although the importance of undertaking educational research has not been overlooked.  Thus, the role of research in the professional development of teachers is emphasised through the teaching practice.

It is necessary for  teacher training to stress the teacher’s role as mediator between personal and social development and learning, encouraging the personal, scientific and cultural education of students as citizens able to participate, exercise their rights and fulfill their obligations in a democratic society.

The aims of  of  the Master’s Degree programme are as follows:

  • To encourage the development of a holistic and analytical approach to the educational, social, cultural and environmental problems of our times.
  • To foster a positive, critical attitude to professional identity.
  • To encourage collaboration with other professionals within the educational context.
  • To foster the use of research processes within the classroom as the basis for professional develoment.
  • To provide a suitable cultural, personal, ethical and social training for teaching adolescents .
  • To encourage an understanding of the relationships between learning models, the school context and the teaching approaches used in professional practice.
  • To foster  recognition, understanding and awareness of student diversity, based on their level of development,family background as well as  the social and cultural contexts.

 

Achieving these objectives will enable future teachers to gain the required professionalskills for their  vocation.  Completion of this training programme also results in the progressive acquisition of educational skills, together with skills associated with the overall teaching and learning processes.

 

 

Professional Profile

 

Professions for which the degree qualifies its holder

Compulsory and Post-Compulsory Secondary Education Teacher, Vocational Training Teacher, Foreign Language Teacher, Arts or Sports Teacher.

 

 

Information about the Centre General information for students

  • Polytechnic University College
Campus de San Vicente del Raspeig
Ctra. de Alicante s/n 03690
San Vicente del Raspeig (Alicante)
Telephone:+ 34 96 590 3648
Fax:+ 34 96 590 3644
eps@ua.es 
http://www.eps.ua.es 

 

  •  Continuous Training Center (ContinUA)
         Ground Floor Germán Bernácer
         Telephone:
+ 34 96 590 9422
         Fax: + 34 96 590 9442
           continua@ua.es
          http://web.ua.es/en/continua

 

 

UA: General Regulations
 + Information about qualifications

 

Saltar pie
Servicio de informática
Saltar estándares