- Técnicas reductoras de integración múltiple y aplicaciones biomédicas y técnicas. - Optimización global sin condiciones de convexidad por densificación. - Estudio y generalización de propiedades a espacios de dimensión infinita y aplicaciones. - Densificación por medio de ecuaciones funcionales. - Distribución de ceros de sucesiones especiales de funciones enteras que aproximan la Zeta de Riemann. - Modelos matemáticos de inhibidores de NO en el cerebro.
- Caracterización de las Curvas Alpha-Densas mediante funciones gamma-uniformemente distribuidas. - Caracterización de las Curvas de Peano por medio de medidas de Borel. - Optimización global multivariable mediante una técnica reductora de la dimensión. Eliminación de mínimos parásitos de funciones univariables. - Caracterización de Curvas de Peano mediante límites de Curvas Alpha-Densas. - Existencia de rectángulos de la banda crítica y fórmula exacta sobre el número de ceros en ellos. - Adaptación de la teoria de Curvas alpha-densas a la programación de números enteros.
- Bibliografía específica sobre Curvas Alpha-Densas y relativa a sus antecedentes históricos. - Work Station para ensayar técnicas de aproximación numérica - Producción científica sobre este sujeto