

METODOS ANALITICOS Y MOLECULARES AMBIENTALES (2016-17)

DATOS GENERALES

Código 35625

Créditos ECTS 3

Departamentos y áreas

Departamento Área Dpt. Resp. Dpt. Acta
Agroquímica y Bioquímica BIOQUIMICA Y BIOLOGIA MOLECULAR SÍ SÍ

Estudios en que se imparte

MÁSTER UNIVERSITARIO EN ANÁLISIS Y GESTIÓN DE ECOSISTEMAS MEDITERRÁNEOS

Contexto de la asignatura

Esta es una asignatura instrumental que proporciona al alumno el conocimiento de una serie de aplicaciones de herramientas analíticas generales de base química y biológica. Cursando esta asignatura, el egresado será capaz de decidir que herramientas analíticas serán necesarias para el estudio y análisis de problemas medioambientales en ecosistemas mediterráneos en función de los objetivos del estudio en cuestión.

OBJETIVOS

Objetivos específicos aportados por el profesorado (2016-17)

Manejar en la práctica la tecnología y métodos analíticos y moleculares para resolver problemas medioambientales en ecosistemas mediterráneos.

CONTENIDOS

Contenidos teóricos y prácticos (2016-17)

- ¿ Técnicas de muestreo: continuo, discontinuo, remoto
- ¿ Consideraciones del muestreo de partículas y técnicas analíticas e intrumentales.
- ¿ Consideraciones del muestreo de gases: técnicas analíticas e instrumentales.
- ¿ Técnicas de medida remotas desde el suelo: LIDAR, DOAS, FTIR....
- ¿ Cromatografía de gases. Principios teóricos. Instrumentación.. Gas portador. Columnas cromatográficas. Fases estacionarias .Fases móviles: Control de temperatura Detectores.
- o Sistemas de inyección: Desorción térmica, purga y trampa, on column, split/split less
- o Hibridación instrumental
- o Aplicaciones ambientales y agroalimentarias.
- ¿ Cromatografía de líquidos de alta resolución. Principios teóricos. Instrumentación. Fase móvil. Sistemas de bombeo. Sistemas de mezcla. Sistemas de inyección de muestra. Columnas: fases estacionarias. Tipos de cromatografías. Sistemas de detección
- o Criterios de selección de la fase móvil: Optimización de condiciones
- o Hibridación instrumental
- o Aplicaciones agroalimentarias.
- Fundamentos de Biología Molecular (T)
- Técnicas de extracción de DNA, RNA y proteínas (P)
- Técnicas básicas de Biología Molecular: manipulación, amplificación y secuenciación de DNA (T/P)
- Tecnología de transformación genética de plantas y microorganismos (T)
- Aplicaciones Bioinformáticas para análisis de secuencias biológicas (T/P)
- Técnicas de análisis de proteínas: electroforesis 1D y 2D, western blot, espectrometría de masas (T/P)
- Detección molecular de organismos en el ambiente y en materiales agroalimentarios (T)
- Análisis de diversidad molecular (T)
- Genómica y Proteómica Ecológica y Agroalimentaria (T)
- Detección de organismos modificados genéticamente (ÓMGs) y sus productos derivados (T)
- Impacto ambiental de la transgénesis: constatación de riesgos ecológicos asociados a los OMGs (T)
- Análisis molecular de la rizosfera

EVALUACIÓN

Instrumentos y criterios de Evaluación 2016-17

Los alumnos serán valorados en función de la elaboración de un informe de las prácticas de laboratorio (50%), de el/los informes realizados sobre casos prácticos (50%).

Tipo	Criterio	Descripción	Ponderación
ACTIVIDADES DE EVALUACIÓN DURANTE EL SEMESTRE	Trabajos sobre material bibliografico, exposicion.	TEORÍA	50
ACTIVIDADES DE EVALUACIÓN DURANTE EL SEMESTRE	Valoracion de informes	Practicas	50