Ir a cuerpo Ir a Estudios, Gobernanza y organización
Logo UA
Realizar búsqueda
Course description
  MATHEMATICS FUNDAMENTALS 1

Competencies and objectives

 

Course context for academic year 2018-19

Basic Mathematics 1 is a first semester subject of the first course of the degree. This subject is focused on Differential and Integral Calculus of Single Variable Real Functions, Algebra of Matrices, and Geometry from an analytic viewpoint. This subject provides some mathematical tools which will be useful in the development of other disciplines. Besides, Basic Mathematics 1 provides the necessary background students need to master before they are ready for the second semester subject Basic Mathematics 2.

 

 

Course content (verified by ANECA in official undergraduate and Master’s degrees)

General Competences (CG)

  • CG-4 : Comprender los problemas de la concepción estructural, de construcción y de ingeniería vinculados con los proyectos de edificios así como las técnicas de resolución de estos.
  • CG-5 : Conocer los problemas físicos, las distintas tecnologías y la función de los edificios de forma que se dote a éstos de condiciones internas de comodidad y protección de los factores climáticos.

 

Basic Competences and Competences included under the Spanish Qualifications Framework for Higher Education (MECES)

  • CB 1 : Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • CB 2 : Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  • CB 4 : Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
  • CB 5 : Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

 

Inherent transversal competences:>>Cognitive Instrumental

  • CT-10 : Habilidad para el análisis y la síntesis. Habilidad para separar las partes de un proceso de indagación, y la habilidad para recomponer el todo a partir de unas partes.

 

UA Basic Transversal Competences

  • CT-6 : Capacidad de adaptarse a nuevos conceptos y métodos. Capacidad de aprender y aplicar, de forma autónoma e interdisciplinar, nuevos conceptos y métodos.

 

Inherent transversal competences:>>Technological Instrumental

  • CT-21 : Habilidad para la visión espacial. Habilidad para entender y asimilar un objeto, proceso o espacio con independencia de las visualizaciones previstas; así como la capacidad para generar otras nuevas.

 

Specific Competences:>>Preparatory Block

  • CE-11 : Conocimiento aplicado del cálculo numérico, la geometría analítica y diferencial y los métodos algebraicos.
  • CE-3 : Conocimiento adecuado y aplicado a la arquitectura y al urbanismo de los sistemas de representación espacial.
  • CE-5 : Conocimiento adecuado y aplicado a la arquitectura y al urbanismo de la geometría métrica y proyectiva.
  • CE-7 : Conocimiento adecuado y aplicado a la arquitectura y al urbanismo de los principios de la mecánica general, la estática, la geometría de masas y los campos vectoriales y tensoriales.

 

 

 

Learning outcomes (Training objectives)

No data

 

 

Specific objectives stated by the academic staff for academic year 2018-19

The course is split into two modules. The first one will extend knowledge of differential and integral calculus from school. The main objective of the first module is the use of the former topics in some applications. For example, applications of the derivative as a rate of change and the use of integral calculus to calculate areas and volumes. The notions of derivative and integral, and their applications, are essential tools whose calculation can be done making use of some computational software.

The second module is devoted to algebra of matrices and analytic geometry, topics that will allow the students to have a better development in other disciplines of the degree. The analytic and practice treatment of the contents is complemented with the use of some computational software, which will lead students to a better learning and application of the topics of the course.

 

 

General

Code: 35504
Lecturer responsible:
VILLACAMPA ESTEVE, YOLANDA
Credits ECTS: 6,00
Theoretical credits: 1,20
Practical credits: 1,20
Distance-base hours: 3,60

Departments involved

  • Dept: APPLIED MATHEMATICS
    Area: APPLIED MATHEMATICS
    Theoretical credits: 1,2
    Practical credits: 1,2
    This Dept. is responsible for the course.
    This Dept. is responsible for the final mark record.

Study programmes where this course is taught