Ir a cuerpo Ir a Estudios, Gobernanza y organización
Logo UA
Realizar búsqueda
Guies docents
MÈTODES QUALITATIUS PER A EDO

Competències i objectius

 

Context de l'assignatura per al curs 2018-19

Métodos Cualitativos para EDO es una asignatura del tercer curso del Grado en Matemáticas.

 

 

Competències de l'assignatura (verificades per ANECA en graus i màsters oficials)

Competències específiques (CE)

  • CE14 : Resoldre problemes qualitatius i quantitatius segons models desenvolupats prèviament.
  • CE3 : Assimilar la definició d'un nou objecte matemàtic, en termes d'altres ja coneguts, i ser capaç d'utilitzar aquest objecte en diferents contextos.
  • CE6 : Resoldre problemes de matemàtiques, mitjançant habilitats de càlcul bàsic i altres tècniques, planificant-ne la resolució a partir de les eines de què es dispose i de les restriccions de temps i recursos.

 

 

 

Resultats d'aprenentatge (Objectius formatius)

  • Conèixer els conceptes d'espai de fases, òrbites, punts crítics i solucions periòdiques.
  • Conèixer la noció d'estabilitat en el sentit de Liapunov.
  • Conèixer la noció de bifurcació elemental i càlcul de diagrames de bifurcació.

 

 

Objectius específics indicats pel professorat per al curs 2018-19

SISTEMAS AUTÓNOMOS

Comprender los conceptos fundamentales de los sistemas dinámicos: órbita, espacio de fase, solución de equilibrio (punto crítico o de equilibrio) y linealización.

Estudiar las propiedades fundamentales de los sistemas autónomos.

Conocer la definición de órbita periódica y sus propiedades básicas.

Analizar los diferentes tipos de puntos críticos en sistemas de dimensión dos y tres.    
                        
Conocer la relación que existe entre un sistema dinámico no lineal y el linealizado correspondiente.
                        
Comprender los conceptos de variedades estable e inestable de un punto de equilibrio de un sistema dinámico.

Aprender a aplicar el criterio de Bendixson para analizar la existencia de soluciones periódicas.
                  
Comprender los conceptos de conjunto límite positivo y negativo, así como las propiedades que verifican.
                        
Conocer el concepto de aplicación de Poincaré.
                        
Comprender el teorema de Poincaré-Bendixson y saber cómo aplicarlo para delimitar regiones del plano de fase en las que existe una órbita periódica.

ESTABILIDAD

Definir el concepto de estabilidad y estabilidad asintótica de las soluciones de equilibrio.
                  
Extender las definiciones de estabilidad de una solución de equilibrio a órbitas periódicas.
                        
Estudiar la relación entre la estabilidad orbital de una solución periódica y la aplicación de Poincaré.

Estudiar la estabilidad de sistemas diferenciales con coeficientes constantes.

Estudiar la estabilidad de sistemas diferenciales con coeficientes con límite.

Estudiar la teoría de Floquet para sistemas diferenciales con coeficientes periódicos.

Estudiar la relación entre la estabilidad de un sistema no lineal y su linealización.
                                      
Comprender la filosofía del método directo para el estudio de la estabilidad de un sistema.

Conocer los teoremas fundamentales que permiten decidir sobre la estabilidad de una solución de equilibrio a partir
del método directo.

 

 

 

Dades generals

Codi: 25032
Professor/a responsable:
NAVARRO LLINARES, JUAN FCO.
Crèdits ECTS: 6,00
Crèdits teòrics: 1,32
Crèdits pràctics: 1,08
Càrrega no presencial: 3,60

Departaments amb docència

  • Dep.: MATEMÀTICA APLICADA
    Àrea: MATEMÀTICA APLICADA
    Crèdits teòrics: 1,32
    Crèdits pràctics: 1,08
    Aquest departament és responsable de l'assignatura.
    Aquest dep. és responsable de l'acta.

Estudis en què s'imparteix